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Abstract
We study the stationary nonlinear Schrödinger equation, or Gross–Pitaevskii
equation, for a single delta potential and a delta-shell potential. These model
systems allow analytical solutions, and thus provide useful insight into the
features of stationary bound, scattering and resonance states of the nonlinear
Schrödinger equation. For the single delta potential, the influence of the
potential strength and the nonlinearity is studied as well as the transition from
bound to scattering states. Furthermore, the properties of resonance states in a
repulsive delta-shell potential are discussed.

PACS numbers: 03.65.Ge, 03.65.Nk, 03.75−b, 05.45.Yv

1. Introduction

In the case of low temperatures, the dynamics of a Bose–Einstein condensate can be described
in a mean-field approach by the nonlinear Schrödinger equation or Gross–Pitaevskii equation
[1]. We will focus on the one-dimensional case, which can be achieved experimentally by
a tight confinement in the two other spatial directions (see, for example, [2] and references
therein). The nonlinear Schrödinger equation for the macroscopic wavefunction is then
given by (

− h̄2

2m

∂2

∂x2
+ V (x) + g|ψ(x, t)|2

)
ψ(x, t) = ih̄

∂ψ(x, t)

∂t
, (1)

where g = 4πh̄2aN/m is the nonlinear ‘interaction strength’ and N is the number of particles
in the condensate. The wavefunction is normalized to ‖ψ‖ = 1. In this ansatz, one only
takes elastic s-wave scattering into account, characterized by the s-wave scattering length a.
The scattering length a and thus the nonlinearity g are negative for an attractive nonlinear
interaction and positive for a repulsive one. Another important application of the nonlinear
Schrödinger equation is the propagation of electromagnetic waves in nonlinear media (see,
e.g., [3], chapter 8).
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Here we study the nonlinear Schrödinger equation for two simple potentials: a single
delta potential

V (x) = λδ(x), (2)

modelling a short range interaction, and the delta-shell potential

V (x) =
{

+∞ for x < 0
λδ(x − a) for x � 0

(3)

with a > 0. The delta shell is a popular model system for the study of resonances and decay.
We confine ourselves to the stationary case, where the time dependence is given by the factor
e−iµt/h̄. Using units with h̄ = 1 and m = 1, the stationary nonlinear Schrödinger equation
reads (

−1

2

d2

dx2
+ V (x) + g|ψ(x)|2

)
ψ(x) = µψ(x). (4)

The solutions of equation (4) for the delta potential and the delta-shell potential are essentially
those of the free nonlinear Schrödinger equation. The wavefunction itself is continuous, but
due to the delta potential, its first derivative is discontinuous at x = 0, resp. x = a:

lim
ε→0+

(ψ ′(a + ε) − ψ ′(a − ε)) = 2λψ(a). (5)

One can easily show that this behaviour, well known for the Schrödinger equation, is not
changed by the nonlinearity. Furthermore, in the case of the delta-shell potential, the boundary
condition ψ(0) = 0 has to be obeyed.

The motivation for a detailed discussion of these simple model systems is twofold. Firstly,
analytic solutions of the nonlinear Schrödinger equation for a non-vanishing potential V (x)

are very rare. By an analysis of such simple potentials we can show analytically that nonlinear
bound and resonance states exhibit new fundamental qualities in comparison to linear systems.

Secondly, these new features of nonlinear bound and resonance states are important
in the context of nonlinear transport past obstacles, e.g. in atom chip experiments (see [4]
and references therein). For example, the flow past a single short-range obstacle, that can
approximated by a delta potential, is studied in [5, 6].

Another important application is the transport through a double barrier, that crucially
depends on the resonances of the potential, as studied in [4]. It can be argued that the transport
phenomena do not depend sensitively on the specific shape of the potentials [4] and an analysis
of the resonances in a delta-shell potential, or equivalently the anti-symmetric resonances of a
double-delta potential, will be quite useful. For example the shift of the resonance positions and
widths due to the nonlinearity calculated numerically in [7] for a Gaussian-shaped double-
barrier can be deduced analytically up to first order in the nonlinearity for the delta-shell
potential.

2. Single delta potential

The single delta potential (2) is the easiest model for the study of the existence and the
properties of bound and scattering states. It has been studied rather briefly in the context of a
nonlinear flow [5, 6].

In the linear case, g = 0, equation (4) with λ < 0 supports a single bound state with
energy E0 = −λ2/2 and a continuous spectrum for E > 0, however, without embedded
resonances. The normalized bound state wavefunction is

ψ0(x) =
√

|λ| eλ|x|. (6)
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Figure 1. Wavefunctions ψ(x) of bound states of the nonlinear Schrödinger equation (attractive
nonlinearity, g = −1) for a delta potential V (x) = λδ(x) with λ = −0.2 (− − −), λ = 0 (—) and
λ = +0.2 (− · −).

In the following, we will study the modifications of this linear case due to an attractive resp.
repulsive nonlinearity. By means of the scaling x = x ′/|g|, ψ = ψ ′√|g|, λ = λ′|g| and
µ = µ′g2 (which conserves the normalization), the parameter g in (4) can be removed up to
a sign. Therefore, we will fix the nonlinearity to g = ±1 (with the exception of section 2.3).

2.1. Attractive nonlinearity

In the case of an attractive nonlinearity, g = −1, the nonlinear Schrödinger equation (4) has
the well-known bright soliton solution for λ = 0 and µ < 0 [8, 9],

ψ(x) = k sech(k(x − x0)) with k =
√

−2µ. (7)

In order to find nonlinear bound states, i.e. normalizable solutions of equation (4), bright
soliton solutions of form (7) for x > 0 and x < 0 are matched at x = 0 by means of condition
(5). Obviously, the wavefunction ψ(x) has to be symmetric with respect to x = 0 and is
therefore given by expression (7) for x � 0 and ψ(x) = ψ(−x) otherwise. Inserting this
ansatz into equation (5) leads to the condition

tanh(kx0) = λ/k. (8)

Combined with the normalization of the wavefunction,

1 =
∫ +∞

−∞
|ψ(x)|2 dx = 2k2

∫ +∞

0
sech2(k(x − x0)) dx

= 2k(1 + tanh(kx0)), (9)

this yields

k = 1
2 − λ, i.e. µ = − 1

8 (2λ − 1)2. (10)

Because of |tanh(kx0)| < 1, one finds a condition for the existence of a bound state:

λ < λc = 1
4 . (11)

A bound state exists for any attractive delta potential but also for a repulsive one, provided
that its strength is not too large. This effect is due to the attractive self-interaction −|ψ(x)|2
which can compensate a limited external repulsion.

Figure 1 shows the wavefunctions for such bound states for three different values of the
potential strength λ. Quite generally, for an attractive delta potential with a negative value of
x0, the wavefunction tends to concentrate at the delta potential with decreasing λ. A repulsive
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delta potential repels the wavefunction, x0 is positive, and one observes two peaks of ψ(x)

at x = ±x0 that are pushed further away as λ is increased toward λc. For λ → λc the
wavefunction evolves into two infinitely separated bright soliton solutions.

Remarkably, the bound state ceases to exist at a finite negative value of the chemical
potential

µc = − 1
8 (2λc − 1)2 = − 1

32 . (12)

This difference to the linear equation or the case of repulsive nonlinearity (see below)
corresponds to the fact that the wavefunction is no longer bound by an external potential
but by the internal self-interaction.

For λ > λc, there is no longer a bound state solution, but one can actually find periodic
stationary solutions in terms of Jacobi elliptic functions [8, 9]

ψ(x) = 4
√

pK(p)

L
cn

(
4K(p)

x − x0

L

∣∣∣∣p
)

. (13)

Here L is the period, p ∈ [0, 1] the elliptic parameter of the Jacobi elliptic function cn and
K(p) denotes the complete elliptic integral of the first kind. The chemical potential is related
to these parameters by

µ = 8(1 − 2p)K2(p)/L2. (14)

These solutions are of course no longer normalizable, and will be denoted as scattering states
in the following. Such a periodic solution, characterized by three parameters, the chemical
potential µ, the period L and the shift x0, has to fulfil only condition (5). Thus, for a fixed
value of the potential strength λ, there exists a variety of solutions, whereby the chemical
potential µ and the period L can be chosen more or less independently. The value of x0 is then
fixed to satisfy condition (5).

In the following, we discuss a particular class of solutions that merge continuously into
the bound state solution when λ is decreased below its critical value λc. Therefore we make
the ansatz that µ and ψ(x = 0) depend continuously on the strength λ of the delta potential at
λc. In fact, we assume the functional relation to be the same for λ > λc and λ < λc, i.e. given
by equation (10), and

ψ(0) = k sech(arctanh(λ/k)), (15)

respectively. For a given value of λ, we construct solutions (13) that fulfil condition (5)
and yield the desired values of µ and ψ(0). Such solutions can indeed be found and
figure 2 illustrates such a wavefunction for λ = 0.26, just above the critical value λc = 0.25,
in comparison to a bound state solution for λ = 0.24.

In the vicinity of the delta potential at x = 0, both wavefunctions look rather similar and
thus the transition from a bound to a scattering state seems to be continuous. The observed
difference between the bound state and the periodic solution for |x| > L disappears in the
limit λ ↘ λc because the period L of the Jacobi elliptic solution moves toward infinity.

To explore this transition in some detail, we consider the position x0 of the first maximum
of |ψ(x)|2, as a function of λ, given by

x0(λ) = 1

1/2 − λ
arctanh

(
λ

1/2 − λ

)
(16)

for λ < λc and by the solution of the complex equations

ψ(0) = k

√
p

2p − 1
cn

(
kx0(λ)√
2p − 1

∣∣∣∣p
)

and

(17)

λψ(0) = k2
√

p

2p − 1
sn

(
kx0(λ)√
2p − 1

∣∣∣∣p
)

dn

(
kx0(λ)√
2p − 1

∣∣∣∣p
)
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Figure 2. Wavefunctions of a bound state (−−, λ = 0.24) and a scattering state (—, λ = 0.26)
for a repulsive delta potential V (x) = λδ(x) for an attractive nonlinearity close to the transition at
λc = 0.25.
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Figure 3. Transition from a bound to a scattering state. Left: position x0(λ) of the first maximum
of the wavefunction. Right: norm per period L. Note that L → ∞ as λ ↘ λc .

for λ > λc, where k and ψ(0) are fixed by equations (10) and (15) as discussed above. At λc,
the function x0(λ) shown in figure 3 on the left has a logarithmic singularity.

On the right of figure 3, the norm per period
∫ L/2
−L/2 |ψ(x)|2 dx is displayed, which tends

to unity at the critical point λc, i.e. it approaches the bound state normalization. Hence the
norm is also continuous.

2.2. Repulsive nonlinearity

In the case of a repulsive nonlinearity, g = +1, the nonlinear Schrödinger equation has the
well-known dark soliton solutions for λ = 0 [9, 10]:

ψ = √
µ tanh (

√
µ(x − x0)). (18)

Making such an ansatz separately for x > 0 and x < 0 and matching at x = 0 with respect to
condition (5) yields x0 = 0 regardless of the value of λ. Remarkably, the wavefunction has a
zero at x = 0 even for an attractive delta potential. But solutions of this kind are of course not
normalizable. Another possible solution is

ψ(x) = k cosech(k(x − x0)), with k =
√

−2µ, (19)

which is usually discarded because of its unphysical singularity at x = x0. In the case of a
delta potential, however, this ansatz reveals proper stationary bound states. Assuming (19) for
x > 0, a short calculation shows that the wavefunction has to be symmetric, ψ(−x) = ψ(x).
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Figure 4. Wavefunctions ψ(x) of bound states of the nonlinear Schrödinger equation (repulsive
nonlinearity, g = +1) for a delta potential V (x) = λδ(x) for three values of the potential strength
λ = −1 (− − −), λ = −0.7 (− · −) and for the critical case λ = −0.5 (—).

In addition, x0 must be negative because otherwise the wavefunction would become singular
at x = x0. Condition (5) yields

tanh(kx0) = k/λ (20)

and the normalization of the wavefunction requires

1 =
∫ +∞

−∞
|ψ(x)|2 dx = 2k2

∫ +∞

0
cosech2(k(x − x0)) dx

= −2k(1 + coth(kx0)). (21)

This leads to

k = − 1
2 − λ (22)

which must be positive, yielding the condition

λ < λc = − 1
2 , (23)

i.e. the delta potential must be sufficiently attractive to overcome the repulsive self-interaction
in order to support a bound state.

In figure 4, such bound states are displayed for different values of the potential strength λ.
For decreasing values of λ, the wavefunction concentrates at the position of the delta potential.
In the opposite limit, λ ↗ λc, we see by series expansion of the tanh and the sinh functions,
that

x0 → xc = 1/λc and µ → µc = 0 (24)

and that the wavefunction converges to the limiting function

ψc(x) = 1

|x| − xc

= 1

|x| + 2
(25)

also shown in figure 4. This is in contrast to the case of an attractive nonlinearity where the
bright soliton peaks move to ±∞ at the critical value λc.

For λ > λc, one again finds periodic solutions in terms of Jacobi elliptic functions [9, 10]

ψ(x) = 4
√

pK(p)

L
sn

(
4K(p)

x − x0

L

∣∣∣∣p
)

, (26)
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Figure 5. Bound state wavefunctions ψ(x) of the nonlinear Schrödinger equation for an attractive
delta potential V (x) = −δ(x) for different values of the nonlinearity: g = −1 (−−), g = 0 (—),
g = +1 (− · −) and g = gc = 2 (· · ·) .

where L is the periodicity, p ∈ [0, 1] the elliptic parameter of the Jacobi elliptic function and
K(p) denotes the complete elliptic integral of the first kind. The chemical potential is given
by

µ = 8(p + 1)K(p)2/L2. (27)

For a fixed value of the potential strength λ, one again finds a variety of solutions, whereby
the chemical potential µ and the period L can be chosen more or less independently. Note that
such periodic solutions can only be found for µ > 0.

Nevertheless, one can find a lower bound for the period L. From equation (27) it follows
that

L =
√

8(p + 1)

µ
K(p) � 2π√

2µ
. (28)

For λ ↘ λc and µ ↘ 0 the period of the wavefunction L tends to infinity and the wavefunction
is not periodic any more in this limit. But in this case one cannot find a continuous transition to
the bound state wavefunction (19). For λ ↗ λc one finds the bound state (25) with ψ(0) = 1/2
and µ = 0. In contrast, we have ψ(0) → 0 for µ ↘ 0 for the periodic solution (26) because
of equation (27). In fact, the elliptic function sn evolves continuously into the tanh when the
elliptic parameter p tends to unity [11].

Actually, there exist Jacobi elliptic functions that merge continuously into the cosech as
the elliptic modulus p tends to one. These solutions are given in terms of the Jacobi elliptic
functions ds and cs [11]. But these functions have poles at the zeros of the sn and thus are not
physical.

2.3. Variation of the nonlinearity

In this section, we will briefly discuss the influence of the mean-field interaction strength, i.e.
the nonlinearity g, on the solutions of the nonlinear Schrödinger equation for an attractive
delta potential. We therefore reintroduce the parameter g.

The bound state solutions have already been deduced in the previous sections. In figure 5,
the wavefunction of such a bound state is displayed for three different values of the nonlinearity
g = −1, 0, +1 and a fixed potential strength λ = −1. With increasing nonlinearity g, the
wavefunction is pushed outward.
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Figure 6. Dependence of the chemical potential µ (−−) and the parameter x0 (—) on the
nonlinearity g � gc = 2 for the bound state of the nonlinear Schrödinger equation for an attractive
delta potential V (x) = −δ(x).

In both cases of attractive and repulsive nonlinearity, the chemical potential is given by

µ = − 1
8 (2λ + g)2, (29)

which follows directly from the matching condition (5) and the normalization of the
wavefunction. At a critical value of g, the chemical potential µ becomes zero and the
bound state ceases to exist. The condition for the existence of a bound state is the same as
discussed in section 2.2. Reformulated in terms of the nonlinearity parameter g, it reads

g < gc = −2λ. (30)

When g approaches the critical value gc, the situation is similar to the case of a fixed repulsive
nonlinearity g and λ ↗ λc as discussed in the previous section. The wavefunction at the
critical value of g is

ψc(x) =
√−λ

|x| − 2λ
. (31)

The dependence of x0 and µ on the nonlinearity g is illustrated in figure 6. The position
x0 is given by equation (8) for g < 0 and (20) for g > 0, however with k = −λ − g/2.

For g = 0, one finds the well-known value µ = −λ2/2, whereas the function x0(g) has
a logarithmic singularity. Nevertheless, the bound state wavefunction ψ(x) evolves smoothly
into the well-known bound state (6) of the linear problem for an attractive as well as a repulsive
nonlinearity.

For g → gc = −2λ, the chemical potential µ tends to zero and x0 tends to the finite
value 1/λ. The disappearance of the bound state if g is increased above gc is similar to the
effect observed by Moiseyev et al [12] for a smooth potential V (x) where a bound state is
transformed into a resonance-like state at a critical nonlinear interaction.

3. Delta-shell potential

In this section we discuss another simple and very popular model system: the delta-shell
potential. A detailed discussion of the linear three-dimensional delta-shell potential can be
found in [13]. Here we restrict ourselves to the one-dimensional case

V (x) =
{

+∞ for x < 0
λδ(x − a) for x � 0

(32)
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with a > 0. First we briefly resume the basic features of the delta-shell potential in the
linear case (g = 0), in particular the existence of bound states in an attractive potential and
resonances in a repulsive one. As we have already discussed the properties of bound states in
a single delta potential in some detail, we now concentrate on the case of a repulsive potential
(λ > 0). We set h̄ = 1 and m = 1 as above.

3.1. The linear case

In the linear case g = 0, the wavefunction in a delta-shell potential is given by

ψk(x) =



sin(kx) for x < a

sin(kx) +
2λ

k
sin(ka) sin(k(x − a)) for x > a.

(33)

The phase shift δ(k) between incoming and outgoing waves for x > a is easily calculated and
yields

tan δ(k) = cos(2ka) − 1

sin(2ka) + k/λ
. (34)

The S-matrix S(k) is defined in terms of the phase shift δ(k) by [14]

S(k) = 1 + i tan δ(k)

1 − i tan δ(k)
. (35)

Bound states correspond to poles of the S-matrix S(k) on the positive imaginary axis.
Calculating these poles one arrives at

e2ika = 1 − ik

λ
. (36)

This equation has a solution on the positive imaginary axis if the condition

λa > − 1
2 (37)

is fulfilled. This implies that the delta-shell potential has to be sufficiently attractive to support
a bound state. If the distance a is reduced or λ is increased, so that condition (37) is not
fulfilled any longer, the bound state is lost and one finds a virtual state instead. A virtual
state corresponds to a pole of the S-matrix S(k) on the negative imaginary axis [14]. The
wavefunction of such a state diverges exponentially. For a → ∞ the delta-shell potential is
equivalent to a single delta potential and the energy is E → −λ2/2.

Naturally there exist no bound states in a repulsive delta-shell potential, but one can find
resonance states. A resonance is defined by a pole of the S-matrix S(k) in the lower half plane
[14]. The energy of the nth resonance is also complex

En = k2
n

/
2 = En − i�n/2, (38)

where the imaginary part �n is interpreted as a decay rate. In the vicinity of a resonance, the
phase shift δ(k) rapidly changes by an amount of π .

The amplitude of a resonance wavefunction is enhanced for x < a. This is illustrated in
figure 7 for a delta-shell potential of strength λ = 10 at a = 1. The ratio of the amplitudes
on the left-hand side (x < a) and on the right-hand side (x > a) of the delta-shell potential,
denoted as Al resp. Ar , is plotted for real values of the energy. The peaks of the amplitude ratio
Al/Ar close to the resonances are clearly visible. The squared modulus of the wavefunction of
the most stable resonance at E1 = 4.488 − 0.063i is displayed on the right. Nevertheless one
has to keep in mind that the wavefunction finally diverges exponentially for complex energies
E , whereas it is periodic for real energies.
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Figure 7. Left: amplitude ratio Al/Ar for a delta-shell potential with a = 1 and λ = 10 in
the linear case. Right: squared modulus of the wavefunction of the most stable resonance at
E1 = 4.488 − 0.063i.

3.2. Resonances in the nonlinear case

Now we come back to the nonlinear Schrödinger equation(
−1

2

d2

dx2
+ λδ(x − a) + g|ψ(x)|2

)
ψ(x) = µψ(x) for x � 0. (39)

In the following we will only discuss the case of a repulsive delta-shell potential (λ > 0). By
means of a scaling x = x ′/s, ψ = ψ ′√s, λ = λ′s and µ = µ′s2 for s > 0 (which conserves
the normalization), the number of independent parameters is reduced to two. As we are mainly
interested in the effects of a varying nonlinearity, the potential is fixed by a = 1 and λ = 10
in the following examples. In the linear case we find resonances for this potential. Now we
want to identify and characterize resonances in the nonlinear case as well.

But the definition of a resonance becomes somewhat ambitious in the nonlinear case. A
decomposition into incoming and outgoing waves and thus a definition of the S-matrix S(k)

is not possible. One method widely used to compute resonances in the linear case is exterior
complex scaling (see, e.g., [15]). This technique has also been successfully applied to the
nonlinear Schrödinger equation [7, 12].

We will not adopt this approach but rather look for solutions that can be expressed
analytically. We have already learned that the real solutions of the free nonlinear Schrödinger
equation are given in terms of Jacobi elliptic functions. These solutions are matched at x = a

to obtain solutions for the delta-shell potential. The chemical potential µ of such a solution is
real. Thus we can define a resonance neither by a complex eigenenergy nor via the S-matrix.
In the following we will rather call a state a resonance, when its amplitude is resonantly
enhanced in the vicinity of the potential, i.e. for x < a.

Let us briefly discuss the time evolution of nonlinear resonances. Note that the states

ψ(x, t) = exp(−iµt)ψ(x) (40)

with a complex chemical potential µ = µr − i�/2 do not fulfil the time-dependent nonlinear
Schrödinger equation, because the norm of these states is not constant. One can circumvent
this problem by introducing an additional source term or one considers states (40) just as an
adiabatic approximation [7]. In contrast states (40) with a real chemical potential µ discussed
in this paper fulfil the time-dependent nonlinear Schrödinger equation but do not decay.
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Furthermore we have to be cautious about the nonlinear parameter g. A meaningful
definition of the nonlinearity requires that the norm or the amplitude of a solution must be
fixed in some way, e.g. by ‖ψ‖ = 1 in section 2. This is not applicable any longer since
resonance states are not normalizable. As a global measure of the nonlinear interaction we thus
define the mean-field potential g|ψ(x)|2, integrated over the ‘interaction-region’ 0 < x < a

of the external potential:

geff = g

∫ a

0
|ψ(x)|2 dx. (41)

3.3. Attractive nonlinearity

First we discuss the nonlinear Schrödinger equation with a negative nonlinearity g,
corresponding to an attractive mean-field interaction. As stated above, the real-valued periodic
solutions of the free nonlinear Schrödinger equation with a negative nonlinearity can be
expressed in terms of the Jacobi elliptic function cn [8, 9]. Thus, in order to find solutions for
the delta-shell potential we make an ansatz of the form (26) separately for x < a and x > a:

ψ(x) =




ψl(x) = Alcn
(
4K(pl)

(
x

Ll

+
1

4

)∣∣∣∣pl

)
for x < a

ψr(x) = Arcn

(
4K(pr)

x + x0

Lr

∣∣∣∣pr

)
for x > a.

(42)

The amplitudes Al,r and the periods Ll,r are given by

Al,r = 4
√

pl,rK(pl,r )√|g|Ll,r

and µ = 8(1 − 2pl,r )K(pl,r )
2

L2
l,r

, (43)

where pl,r are the elliptic parameters of the solution on the left-hand (x < a) and on the
right-hand (x > a) side of the delta shell. Clearly one has only one value for the chemical
potential, whereas the amplitude A, the parameter p and the period L generally differ for
x < a and x > a. This is different from the linear case, where the period L is fixed with
the energy. The chemical potential is positive, µ � 0, if the elliptic parameter is restricted to
pl,r ∈ [0, 1/2].

The boundary condition ψ(0) = 0 is automatically fulfilled by this ansatz. Furthermore
the wavefunction must be continuous at x = a, whereas its derivative is discontinuous
according to equation (5), leading to the conditions:

(I.) Alcn(ul|pl) = Arcn(ur |pr)

(II.) 2λAlcn(ul|pl) = −4ArKr

Lr

sn(ur |pr)dn(ur |pr) +
4AlKl

Ll

sn(ul|pl)dn(ul|pl), (44)

where the abbreviations ul = K(pl)(4a/Ll + 1) and ur = 4K(pr)(a + x0)/Lr have been
used. The first condition can be fulfilled by an appropriate choice of x0, as long as
|Alcn(ul|pl)| � |Ar |. Then one can insert the first condition into the second one and arrive at

2λ2

µ

pl

1 − 2pl

cn(ul|pl)
2 − 4λ√

2µ

pl

(1 − 2pl)3/2
cn(ul|pl)dn(ul|pl)sn(ul|pl)

= (1 − pr)pr

(1 − 2pr)2
− (1 − pl)pl

(1 − 2pl)2
. (45)

As argued above we are looking for solutions whose amplitudes are resonantly enhanced
for x < a, i.e. for solutions with a maximum amplitude ratio Al/Ar . This ratio is given
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Figure 8. Amplitude ratio Al/Ar as a function of the chemical potential µ for an effective
nonlinearity geff = −5 (left) and for different effective nonlinearities geff (right). The shift of the
resonance marked by an arrow is displayed as a function of geff in figure 9.

directly by the elliptic parameters pl,r :

Al

Ar

=
[
pl(1 − 2pr)

(1 − 2pl)pr

]1/2

. (46)

A resonant enhancement of the amplitude ratio demands that pl 	 pr .
In order to identify and analyse resonances of the nonlinear Schrödinger equation we now

calculate the amplitude ratio Al/Ar as a function of the chemical potential for different values
of the effective nonlinearity geff . The left-hand side of figure 8 shows the amplitude ratio as
a function of µ for an effective nonlinearity geff = −5. As in the linear case, illustrated in
figure 7, resonances can be clearly identified as maxima of the amplitude ratio Al/Ar . The
resonances are, however, shifted to smaller values of µ, whereas the width of the resonances
remains similar.

On the right-hand side of figure 8 the amplitude ratio Al/Ar(µ) is plotted for different
values of the effective nonlinearity geff . Resonances are clearly identified for all values of geff ,
but the shift of the resonance positions is clearly visible in this illustration. We note that the
resonance heights barely change with geff .

The observed shift of the resonances will be explained in the following. For convenience
we rather calculate the chemical potential where Al = Ar at the sides of each resonance, in
dependence of geff . These values of the chemical potential will be denoted µ<

n and µ>
n in

the following. They are easier to calculate than the resonance positions µn because pl = pr

holds at these values, furthermore this calculation will also reveal the influence of geff on the
resonance width. We note that the wavefunction on the interval x ∈ [0, 2a] is symmetric
(antisymmetric) around x = a for µ = µ<

n (µ = µ>
n ).

Using both equations (43), the chemical potential can be written as

µ = gA2

(
1 − 1

2p

)
. (47)

The elliptic parameter p can be calculated from the relation

pK(p)2 = |g|A2L2

16
. (48)

Solving this relation for p leads to

p = |g|A2L2

4π2
− 1

2

( |g|A2L2

4π2

)2

+ O(g3A6), (49)
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Figure 9. Left: dependence of the resonance position µn (o) and µ>
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effective nonlinearity geff for n = 3. The solid lines are the approximations (51) and (55). Right:
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and inserting this into equation (47), we find the desired dependence of the chemical potential
on the nonlinear interaction

µ = 2π2

L2

(
1 +

3gA2L2

8π2
+ O(g2A4)

)
. (50)

Formula (50) is valid for both µ>
n and µ<

n . Now we insert the specific values of the period
L and replace gA2 by the effective nonlinearity geff . At µ>

n the period of the wavefunction
is L>

n = 2a/n, i.e. ψ(a) = 0. Equation (41) for the effective nonlinearity can be easily
evaluated in lowest order in p, since then the elliptic function cn equals a cosine, which yields
geff ≈ gA2a/2. This finally leads to

µ>
n ≈ n2π2

2a2
+

3geff

2a
. (51)

Similarly one obtains an expression for µ<
n . In the linear case the period L<

n is given by
the solution of the implicit equation

tan

(
2πa

L<
n

)
= − 2π

λL<
n

. (52)

For the example illustrated in figure 9 (a = 1, λ = 10 and n = 3) one has L<
3 = 0.7215.

The change of L<
n with geff is negligible. Again equation (41) for the effective nonlinearity is

readily evaluated in lowest order in p and yields

geff ≈ gaA2

2

(
1 − sin

(
4πa

/
L<

n

)
4πa/L<

n

)
(53)

= gaA2

2

(
1 +

1

λa
(
1 + (2π)2

/(
λL<

n

)2)
)

. (54)

Inserting into equation (50), one finally arrives at

µ<
n ≈ 2π2(

L<
n

)2 +
3geff

2a

(
1 − sin

(
4πa

/
L<

n

)
4πa

/
L<

n

)−1

. (55)
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Figure 10. Left: amplitude ratio as a function of the chemical potential µ for an effective
nonlinearity geff = 5. Condition (62) for the amplitude ratio is plotted as a dashed line. Right:
amplitude ratio as a function of the chemical potential µ for different effective nonlinearities. The
shift of the resonance marked with an arrow is displayed as a function of geff in figure 9.

The same results are obtained in the case of a repulsive interaction (g > 0, see below).
Thus we compare the approximations (51) and (55) to the numerically exact results for g < 0
and g > 0 together in figure 9. We considered the resonance with n = 3, that is marked with
an arrow in figures 8 and 10. We observe a good agreement. Furthermore the positions µn=3

of the resonances are displayed.
From the different scaling of µ>

n and µ<
n we conclude that the resonance width also

changes with the effective nonlinearity. In fact, the width increases almost linearly with geff

and the resonances become slightly asymmetric. The dependence of the width �µ = µ>
3 −µ<

3
on the effective nonlinearity geff is illustrated in figure 9 on the right.

It should not be concealed that also bound states can exist in a repulsive delta-shell
potential due to the attractive self-interaction, falling of as sech

(√−2µ(x − x0)
)

for x > a.
However, we will not consider these states here as we already discussed a similar phenomenon
for the single delta potential.

3.4. Repulsive nonlinearity

As stated above, the real non-singular solutions of the free nonlinear Schrödinger equation
with a repulsive nonlinearity can be expressed in terms of the Jacobi elliptic function sn
[9, 10]. Thus we make the ansatz:

ψ(x) =




ψl(x) = Alsn

(
4K(pl)

x

Ll

∣∣∣∣pl

)
for x < a

ψr(x) = Arsn

(
4K(pr)

x + x0

Lr

∣∣∣∣pr

)
for x > a.

(56)

The amplitudes Al,r and the periods Ll,r are now given by

Al,r = 4
√

pl,rK(pl,r )√|g|Ll,r

and µ = 8(pl,r + 1)K(pl,r )
2

L2
l,r

, (57)

where pl,r ∈ [0, 1] are the elliptic parameters of the solution on the left (x < a) and on the
right (x > a) of the delta shell.
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The boundary condition ψ(0) = 0 is automatically fulfilled by ansatz (56). The remaining
conditions for the wavefunction and its derivative at x = a (cf equation (5)) read

I. Alsn(ul|pl) = Arsn(ur |pr)

II. 2λAlsn(ul|pl) = 4ArKr

Lr

cn(ur |pr) dn(ur |pr) − 4AlKl

Ll

cn(ul|pl) dn(ul|pl), (58)

where the abbreviations ul = 4K(pl)a/Ll and ur = 4K(pr)(a + x0)/Lr have been used.
If |Alsn(ul|pl)| � |Ar | the first condition can always be fulfilled by an appropriate choice

of the ‘phase shift’ x0. Inserting the first condition into the second one and using the addition
theorems of the Jacobi elliptic functions one arrives at

2λ2

µ

pl

pl + 1
sn2(ul|pl) +

pl

(pl + 1)3/2

4λ√
2µ

cn(ul|pl) dn(ul|pl) sn(ul|pl)

= pr

(pr + 1)2
− pl

(pl + 1)2
. (59)

The amplitude ratio Al/Ar is given by

Al

Ar

=
[
pl(pr + 1)

(pl + 1)pr

]1/2

(60)

in terms of the elliptic parameters. A resonant enhancement of the amplitude ratio demands
that pl 	 pr .

Again we calculated the amplitude ratio Al/Ar as a function of the chemical potential µ

for different values of the effective nonlinearity geff . The results are illustrated in figure 10.
The left-hand side shows the amplitude ratio Al/Ar for an effective nonlinearity geff = 5,
which should be compared to figures 7 and 8. The first observation is that one cannot find
solutions for all values of µ. In fact there exist no solutions with an amplitude ratio below
a certain threshold. Resonances are still clearly identified as maxima of the amplitude ratio.
Again the resonance positions are shifted in comparison to the linear case.

On the right-hand side the amplitude ratio is plotted for different values of geff . One
observes that the solutions cease to exist with an increasing effective nonlinearity, whereas the
resonances survive longest. The resonances are shifted similarly to the case of an attractive
interaction.

We noted that solutions with a small amplitude ratio Al/Ar cease to exist when geff is
increased. In fact the second condition in (58) cannot be fulfilled any longer if the amplitude
ratio Al/Ar drops below a certain threshold. A condition for the existence of a solution can
be derived from equations (60) and (57) and yields(

Al

Ar

)2

� 2pl

pl + 1
= gA2

l

µ
. (61)

Inserting geff ≈ gaA2
l /2 on the right-hand side, one is led to the approximation

Al

Ar

�
(

2geff

aµ

)1/2

. (62)

As a consequence solutions apart from the resonances with small amplitude ratios cease to
exist when geff is increased. This approximate condition is well confirmed by the numerical
exact results displayed in figure 10.

The shift of the resonances is understood in the same way as in the case of an attractive
interaction. The chemical potential is now given by

µ = gA2

(
1

2
+

1

2p

)
, (63)
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while equation (49) still holds. Inserting into equation (63) and expanding up to the linear
term in gA2 again leads to equation (50). Thus one arrives at the same results as in the case of
an repulsive interaction, in particular at equation (51) for µ>

n and equation (55) for µ<
n . The

results for n = 3 are displayed in figure 9. The approximations agree well with the numerical
exact results. From the different scaling of µ>

n and µ<
n with geff we conclude that a repulsive

nonlinearity increases the resonance width.

4. Conclusion

In this paper we analysed the properties of bound, scattering and resonance states of the
nonlinear Schrödinger equation using two simple model systems.

Bound, i.e. normalizable, states were calculated and analysed for a single delta potential.
New features occur in the case of an attractive nonlinearity, as states are no longer bound
by an external potential but by the internal interaction. In this case bound states can exist
despite a repulsive external potential, and they cease to exist at a negative value of the chemical
potential. In addition we investigated the transition from bound to scattering states.

Furthermore we discussed a repulsive delta-shell potential as a simple model showing
resonances. Resonances can still be identified in the nonlinear case, though the definition of a
resonance becomes somewhat ambitious. Two major effects of the nonlinearity were analysed
in detail: firstly, the resonance positions are shifted proportionally to the effective nonlinearity
and the resonance width increases with geff . Secondly, scattering states cease to exist with an
increasing repulsive nonlinearity, whereas resonances survive longest.
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